Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. Most authors nowadays simply write algebra instead of abstract algebra.
The term abstract algebra now refers to the study of all algebraic structures, as distinct from the elementary algebra ordinarily taught to children, which teaches the correct rules for manipulating formulas and algebraic expressions involving real and complex numbers, and unknowns. Elementary algebra can be taken as an informal introduction to the structures known as the real field and commutative algebra.
Contemporary mathematics and mathematical physics make intensive use of abstract algebra; for example, theoretical physics draws on Lie algebras. Subject areas such as algebraic number theory, algebraic topology, and algebraic geometry apply algebraic methods to other areas of mathematics. Representation theory, roughly speaking, takes the 'abstract' out of 'abstract algebra', studying the concrete side of a given structure; see model theory.
Two mathematical subject areas that study the properties of algebraic structures viewed as a whole are universal algebra and category theory. Algebraic structures, together with the associated homomorphisms, form categories. Category theory is a powerful formalism for studying and comparing different algebraic structures.
Reference:
http://en.wikipedia.org/wiki/Abstract_algebra