Computable functions (or Turing-computable functions) are the basic objects of study in computability theory. They make precise the intuitive notion of algorithm. Computable functions can be used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Their definition, however, must make reference to some specific model of computation.
Before the precise definition of computable function, mathematicians often used the informal term effectively computable. This term has since come to be identified with the computable functions. Note that the effective computability of these functions does not imply that they can be efficiently computed (i.e. computed within a reasonable amount of time). In fact, for some effectively computable functions it can be shown that any algorithm that computes them will be very inefficient in the sense that the running time of the algorithm increases exponentially (or even superexponentially) with the length of the input. The fields of feasible computability and computational complexity study functions that can be computed efficiently.
According to the Church-Turing thesis, computable functions are exactly the functions that can be calculated using a mechanical calculation device given unlimited amounts of time and storage space. Equivalently, this thesis states that any function which has an algorithm is computable.
The Blum axioms can be used to define an abstract computational complexity theory on the set of computable functions. In computational complexity theory, the problem of determining the complexity of a computable function is known as a function problem.
Reference:
http://en.wikipedia.org/wiki/Computable_function