In computer science and mathematical logic, the Turing degree or degree of unsolvability of a set of natural numbers measures the level of algorithmic unsolvability of the set. The concept of Turing degree is fundamental in computability theory, where sets of natural numbers are often regarded as decision problems; the Turing degree of a set tells how difficult it is to solve the decision problem associated with the set.
Two sets are Turing equivalent if they have the same level of unsolvability; each Turing degree is a collection of Turing equivalent sets, so that two sets are in different Turing degrees exactly when they are not Turing equivalent. Furthermore, the Turing degrees are partially ordered so that if the Turing degree of a set X is less than the Turing degree of a set Y then any (noncomputable) procedure that correctly decides whether numbers are in Y can be effectively converted to a procedure that correctly decides whether numbers are in X. It is in this sense that the Turing degree of a set corresponds to its level of algorithmic unsolvability.
The Turing degrees were introduced by Stephen Cole Kleene and Emil Leon Post in the 1940s and have been an area of intense research since then.
Reference:
http://en.wikipedia.org/wiki/Turing_degree