Mathematical logic is a subfield of logic and mathematics. It consists both of the mathematical study of logic and the application of this study to other areas of mathematics. Mathematical logic has close connections to computer science and philosophical logic, as well. Unifying themes in mathematical logic include the expressive power of formal logics and the deductive power of formal proof systems.
Since its inception, mathematical logic has contributed to, and has been motivated by, the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of sets, although there are some theorems that cannot be proven in common axiom systems for set theory. Contemporary work in the foundations of mathematics often focuses on establishing which parts of mathematics can be formalized in particular formal systems, rather than trying to find theories in which all of mathematics can be developed.
Mathematical logic is often divided into the subfields of set theory, model theory, recursion theory, and proof theory and constructive mathematics. These areas share basic results on logic, particularly first-order logic, and definability.
Reference:
http://en.wikipedia.org/wiki/Mathematical_logic